A Latent Clothing Attribute Approach for Human Pose Estimation
نویسندگان
چکیده
As a fundamental technique that concerns several vision tasks such as image parsing, action recognition and clothing retrieval, human pose estimation (HPE) has been extensively investigated in recent years. To achieve accurate and reliable estimation of the human pose, it is well-recognized that the clothing attributes are useful and should be utilized properly. Most previous approaches, however, require to manually annotate the clothing attributes and are therefore very costly. In this paper, we shall propose and explore a latent clothing attribute approach for HPE. Unlike previous approaches, our approach models the clothing attributes as latent variables and thus requires no explicit labeling for the clothing attributes. The inference of the latent variables are accomplished by utilizing the framework of latent structured support vector machines (LSSVM). We employ the strategy of alternating direction to train the LSSVM model: In each iteration, one kind of variables (e.g., human pose or clothing attribute) are fixed and the others are optimized. Our extensive experiments on two real-world benchmarks show the state-of-the-art performance of our proposed approach.
منابع مشابه
Articulated human pose estimation in natural images
In this thesis the problem of estimating the 2-D articulated pose, or configuration of a person in unconstrained images such as consumer photographs is addressed. Contributions are split among three major chapters. In previous work the Pictorial Structure Model approach has proven particularly successful, and is appealing because of its moderate computational cost. However, the accuracy of resu...
متن کاملVisual Attribute Extraction Using Human Pose Estimation
We propose a method to describe how a person is dressed, using an innovative way to extract Visual Information exploiting the Human Pose Estimation. Given the lack of algorithms in this field, we aims to pave the way giving a baseline and publishing a detailed dataset for future comparisons. In particular in this study we show how using the Human Pose Estimation, we are able to extract the esse...
متن کاملSpectral attribute learning for visual regression
A number of computer vision problems such as facial age estimation, crowd counting and pose estimation can be solved by learning regression mapping on low-level imagery features. We show that visual regression can be substantially improved by two-stage regression where imagery features are first mapped to an attribute space which explicitly models latent correlations across continuously-changin...
متن کاملPose Normalization for Eye Gaze Estimation and Facial Attribute Description from Still Images
Our goal is to obtain an eye gaze estimation and a face description based on attributes (e.g. glasses, beard or thick lips) from still images. An attribute-based face description reflects human vocabulary and is therefore adequate as face description. Head pose and eye gaze play an important role in human interaction and are a key element to extract interaction information from still images. Po...
متن کاملMonocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision
We propose a CNN-based approach for 3D human body pose estimation from single RGB images, that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data. We propose novel CNN supervision techniques, using a regularization structure while training that extends the concept of multi-level skip connections, and leverage first and...
متن کامل